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The mode fluctuation distributiofMFD) of a system of two quartic oscillators coupled by a quartic pertur-
bation is numerically studied. The coupling strength serves as a control parameter to simulate the transition
from integrable to chaotic regimes. It is demonstrated that even in this potential system the MFD turns out to
be a very sensitive measure, as it manifests the same transformation seen in billiard systems. It is characterized
by Gaussian and skewed distributions in the regions, known to be chaotic and integrable, respectively, from
classical Poincarsections and quantum-mechanical level spacing statistics. In the intermediate regions where
the Kol'mogorov-Arnol'd-Moser tori survive, the MFD has various distorted forfi84063-651X98)04712-§

PACS numbe(s): 05.45+b, 03.65-w

Distribution of quantum energy levels in classically cha-studied, and shows a similar evoluti@8). In the following
otic systems has been studied in recent years. Nearest neighie show that the MFD behaves as the Gaussian distribution
bor spacing distributiofiNNSD), spectral rigidity, distribu- in the chaotic regime, a characteristic skew distribution in
tion of the values of the wave functions, level curvaturesthe integrable limit, and various other distorted distributions
with respect to internal parameters, etc. have been shown {8 the intermediate regimes. _
be useful to investigate irrespective of the systems being With a bounded potential a quantum system has a discrete
classically chaotic or integrable. For example, the NNSD beenergy spectrun{E,}, which defines a spectral staircase
comes the Wigner distribution for chaotic systems, whereafinction N(E)=X=7_,0(E—E,), and the spectral density
it becomes the Poisson distribution if systems are integrabld(E)=dN(E)/dE. The staircase function can be separated
[1]. However a few years ago an exception was found in thénto a mean smooth pa¢N(E)) and a mode fluctuating part
hyperbolic billiard, which is always expected to be classi-Ng(E): N(E)=(N(E))+Ngy(E). Note that the bracket
cally chaotic. In a certain subtle boundary condition, the(---) denotes the average over an interval which is much
NNSD occasionally becomes almost the Poisson distributiotarger than the mean energy level spacfdy %, and suffi-
[2-5]. ciently smaller than the enerdy under consideration.

The mode fluctuation distributioMFD) has been pro- It is expected that our system has a saturated valy&)
posed as an alternative measure that detects the chaotic rad-the spectral rigidityA;(L,E) at sufficiently large., as in
ture of systems$4,5]. It is predicted that the MFD of chaotic the billiard system$4,5,12. The saturated value turns out to
systems always becomes the Gaussian distribution irrespebe the second moment of the fluctuating part, i.e.,
tive of boundary conditions, and that the MFD of integrable @
systems always clearly deviates from the Gaussian. It is nu- d) [ILrz(d)
merically shown that the MFD in the hyperbolic billiard is Aw(E):<TJ[L,2<d>]NfI(E+8)2d8 AtL>Lmax,
consistent with the Gaussian distribution and independent of (1)
the boundary conditions. Recently the MFD’s of several in-
tegrable and chaotic billiards have been stud&d]. These  wherelL,,,, corresponds to a scal®(d)/ T, Which is an
results also support the MFD hypOthESiS. For example, e”mienergy sca|d1/Tmin normalized by the mean energy level
nating the contribution of the bouncing ball orbits carefully, spacing(d) %, andT,, is the period of the shortest classical
the MFD becomes very close to the Gaussian distribu6dn  closed orbit in the system. The MFD is the normalized dis-

in the Bunimovich stadium billiard. tribution of the fluctuating parNg(E). It is defined as the
So far the hypothesis has been checked only on billiar@jistribution of a variable,
systems, but it has not been tested for potential systems. In

this Brief Report we choose a system of two quartic oscilla- Nq(E)
tors coupled by a quartic term to each other. Previously simi- W(E)= . 2
lar systems have been intensively studied employing other VAL(E)

methods[8-11]. This system is known to be a suitable ex-

ample that can be transmuted from an integrable system to BUS its average must be zero, and its variance must be 1.
chaotic system continuously by changing a single coupling The I—_|ami|tonian of the coupled quartic oscillators that we
parameter. It has been investigated that the NNSD evolveghoose is

from a Poisson distribution to a Wigner distribution under Lo o 44 -
transmutation[8]. The spectral rigidityA; has also been H=3(pytpy) +3x*+y"—Ax7y*. )

1063-651X/98/565)/80114)/$15.00 PRE 58 8017 © 1998 The American Physical Society



8018 BRIEF REPORTS PRE 58

70000 =—Coupled

Quartic
60000 - Oscillators
50000 F

40000 | Disnibation A=00
30000 |
20000 |
10000 |

Frequency

-6.00 -4.00 -2.00 0.\;)[0 2.00 4.00 6.00

70000
60000
50000 |
40000 |
30000 | A=0.10
20000 :
10000

0 . | L L L -

-6.00 -4.00 -2.00 0.\;)}0 2.00 4.00 6.00

Frequency

120000 [
100000
80000

60000 |- A=0.50

40000

Frequency

20000 r

0 " L L
-6.00 -4.00 -2.00 0.‘%0 2.00 4.00 6.00

70000
60000
50000
40000 ‘ A=0.80
30000
20000
10000

0 L L L —

Frequency

-6.00 -4.00 -2.00 0.\%0 2.00 4.00 6.00

100000

90000

80000

70000

60000

50000 —
40000 l - 270
30000

20000

10000

0 L . .

-6.00 -4.00 -2.00 0.\%0 2.00 4.00 6.00

Frequency

() (b)

FIG. 1. (8 The Poincaresections corresponding to the Hamiltonian given by . (y,py) section atx=0. (b) The mode fluctuation
distributions which are given by the histogram of the variablgE) defined by Eq(2).

Note that we set dimensionless unfis=sm=1 (h=21), One of the most important properties of our classical sys-
wherem is the mass of a classical point particle in the sys-tem is its scaling property. The system is invariant under the
tem. The last term—\x?y? distorts the two-dimensional transformatiorx—cx, y—cy, t—t/c, E—c*E, owing to
quartic potential, but keeps the potenti&x,y)=3x*+y*  the homogenous potentid{x,y). This scaling relation leads
—\x%y? homogenous. Fak =0, this system becomes sepa- to some advantages in classical dynamics. The Poirszare
rable, that is, a superposition of two integrable systems withlaces of section, the equipotential surfaces, and the orbits in
quartic potentials. I\ >24/3, the potentiaV(x,y) no longer  the phase space are geometrically similar under the scaling
forms a bound quantum system. Then the search for a di®f energy. Their sizes are justimes larger in the directions
crete spectrum of the system becomes meaningless. Therefthe coordinates, ancf times larger in the directions of the
fore, we must keep.<2+/3 in order to calculate the eigen- momenta. Thus, once we find a closed orbit at a certain en-
values. ergy, there always exists a corresponding closed orbit at any
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other energy. Its lengtl’” and periodT are transformed as
/—c/ andT—T/c, if E—c*E. Therefore the classical dy- 0.1
namical properties are geometrically similar under the scal-
ing relations. As the simplest example, we can determine the
shortest period of the unstable and isolated closed dhit

as a function of energi. The shortest periodic orbit is al-
ways a straight line, withy=0 along thex axis, and we o)

. = 71/4 . . - -
obltaln -I;m'”. aE kl;rolm the scaling relation. The explicit FIG. 3. The energy dependence of the saturated spectral rigidity
value ofa IS given below. . A, of the integrable casé) A=0, and the chaotic limiib) A
In order to investigate the dynamical structure of our sys-_5 7. Each value oA, represents the average value of about 60—
tem, we numerically calculate orbits for various initial con- o sample points. It is plotted at the average energy of the sample

ditions and evaluate POinéaﬁEC_tionS- Roughly speaking, points. The axis of abscissa for the integrable daseepresents the
the larger\ goes, the more chaotic the system becoff@$  2th power ofE.

1(a)]. If \ is closer to /3 (=3.464), the islands of stability
become smaller and the chaotic regions dominate more in thgajization of the truncated Hamiltonian becomes worse in a
Poincaresection. AtA=2.7 [Fig. 1(@)], at least from our region of largern. The Brody parameter shows its plateau
numerical investigation, there remains no island in the Poinground 0.3<A < 0.8, and afteh >0.80 it swiftly rises to 1. It
caresections. It can be regarded as a chaotic system. Theorresponds remarkably to the classical mechanical feature
Study of the Poincaresections also shows that the last that remaining KAM tori Sp“t the phage space into the sub-
Kol'mogorov-Arnol'd-Moser (KAM) collapses somewhere regions. However, aftex>0.80, an overall mixing of the
very close ton =0.80 [Flg 1(a)] phase space occurs.

We compute the energy levels by numerical diagonaliza- For the case.=0.0, our system becomes completely in-

tion of the truncated matrix of HamiltoniaB) in the basis of  tegrable. The spectral rigidity is semiclassically estimated as
two independent harmonic oscillatof43]. We calculate [12 15

3000-5000 eigenvalues out of about 8500-15000-

dimensional truncated matrices of Hamiltoni@. The con- 3 » M2M2/c3cs

vergence of the calculated eigenenergies has been confirmedA (E)==— >, —g——aagE34=0.025E3/4,

by changing the frequencies of two harmonic oscillators. 27, WMo=1 <M1+ M2

Only eigenenergies corresponding to wave functions of Ef E§

even-even parity are calculated. This means that what we 4

actually calculate is the desymmetrized system: a quarter of

the system, where a classical point particle is confined in avhere C;=3Y3(3w/2K)*3, C,=(37/2K)*® and K

region ofx=0 andy=0, and is reflected by walls at=0 =F(#/2,1\2)=1.854 07, withF being the complete ellip-

andy=0. tic integral of the first kind. On the other hand, from energy
The Brody parameter is evaluated for each valuenof levels, it is numerically estimated as..(E)=0.0254&3*

[14]. Each data point in Fig. 2 is evaluated by using 3000—+ 0.146[Fig. 3@&], and conforms to the semiclassical analy-

5000 energy levels from the ground state. Ror2.0 the  sis. This implies that the Berry-Tabor treatmé§hb] works

values of the Brody parameter vary widely in a range offairly well even in the case of a nontrivial potential system.

about 0.2. This may be due to the precision of our calcula- When the system is sufficiently chaoti=2.7, we can

tion. The convergence of eigenvalues in a numerical diagopredict the energy dependencefof(E) as[12]

0
0 100 200 300 4E(,‘)0 500 600 700 800
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1 1 changes rapidly and is already close to the Gaussian distri-
A.(BE)= ?In{eLmax}— 3 (5  bution atA =0.8[Fig. 1(b)]. When\>1.0, the MFD already
becomes very close to the Gaussian form. On the other hand,
the NNSD transforms toward the Wigner distribution con-
tinuously. The Brody parameter also indicates that the
NNSD becomes very close to the Wigner distribution when
m > 2.0(Fig. 2. Especially ah =2.7, the Brody parameter is
very close to 1, which corresponds to the Wigner distribu-

Here L &= 2m(d)/ Ty is the maximum value of, above
which the spectral rigidityA;(L,E) is saturatedT i, is the
shortest period of the closed orljit2], and e is the Euler
number. The scaling relations are also helpful in a quantu
analysis. From the scaling relatioff,,=«E ** and (d)

_ pEL/2 tion.
AET, we have In this paper, we have examined coupled quartic oscilla-
3 1 2B 1 tors whose Hamiltonian is given by E@). The Hamiltonian
AL (E)= mm E+ ;zm[ ET] -3 can simulate the transition from integrable to chaotic systems
by the variation of a single parametar This feature is
=0.0760InE—0.0616, (6) confirmed by an analysis of the corresponding classical Poin-

caresections and the quantum mechanical NNSD. In order to

where a=1.41 and $=0.152 are used. The value @f  analyze the MFD, the spectral rigidity is calculated. The ex-
=(37/2)C; ** is derived from an analytical calculation of istence of saturated values of the spectral rigidity is numeri-
the classical shortest periodic orbit. The valuefis ob-  cally confirmed, and corresponding values in the integrable
tained by the numerical calculation of the quantum energyand chaotic domains conform to those deduced from the
density. Numerically the energy dependenc@gfE) is fit-  semiclassical arguments. In the regime where the system is
ted well asA,(E)=0.0802InE—0.0454 forA=2.7 [Fig.  sufficiently chaotic § =2.7), the MFD becomes almost in-
3(b)]. Considering the precision of our numerical calculation,distinguishable from the Gaussian distribution. The system
it agrees well with the semiclassical predictidfq. (6)]. can be set exactly integrabla € 0.0), and then the MFD

When 0.6sA<1.0, the MFD forms into variously dis- expresses a characteristic asymmetry as in the square billiard
torted shapefFig. 1(b)], whereas the NNSD is like the Pois- [16], and as in stadium billiards with bouncing ball modes
son distribution(Fig. 2). This complicated behavior of the [6,7]. Although it presents a Gaussian distribution for the
MFD results from the mixture of the islands of the pseudo-chaotic limit, the MFD is more likely to manifest the skew-
periodic orbits and the chaotic regions. Particularly in theness that is characteristic of the integrable system. It cannot
range of 0.8=A<0.1, the NNSD is very close to the Poisson tell the difference between hard chaos and soft chaos after
distribution. However, the MFD already transforms to a verythe last KAM has disintegrated. Therefore, we conclude that
distorted form at =0.1. This implies that the MFD is more it should be the measure of the integrability rather than the
sensitive to the effect of a small perturbation on the intechaoticity not only in billiard systems but also in potential
grable system than the NNSD. The Brody parameter formsystems, as seen from the example of coupled oscillators
its plateau around 08\<0.8 (Fig. 2), while the MFD  described here.
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