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Mode fluctuation distribution of coupled quartic oscillators
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The mode fluctuation distribution~MFD! of a system of two quartic oscillators coupled by a quartic pertur-
bation is numerically studied. The coupling strength serves as a control parameter to simulate the transition
from integrable to chaotic regimes. It is demonstrated that even in this potential system the MFD turns out to
be a very sensitive measure, as it manifests the same transformation seen in billiard systems. It is characterized
by Gaussian and skewed distributions in the regions, known to be chaotic and integrable, respectively, from
classical Poincare´ sections and quantum-mechanical level spacing statistics. In the intermediate regions where
the Kol’mogorov-Arnol’d-Moser tori survive, the MFD has various distorted forms.@S1063-651X~98!04712-6#

PACS number~s!: 05.45.1b, 03.65.2w
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Distribution of quantum energy levels in classically ch
otic systems has been studied in recent years. Nearest n
bor spacing distribution~NNSD!, spectral rigidity, distribu-
tion of the values of the wave functions, level curvatur
with respect to internal parameters, etc. have been show
be useful to investigate irrespective of the systems be
classically chaotic or integrable. For example, the NNSD
comes the Wigner distribution for chaotic systems, wher
it becomes the Poisson distribution if systems are integra
@1#. However a few years ago an exception was found in
hyperbolic billiard, which is always expected to be clas
cally chaotic. In a certain subtle boundary condition, t
NNSD occasionally becomes almost the Poisson distribu
@2–5#.

The mode fluctuation distribution~MFD! has been pro-
posed as an alternative measure that detects the chaoti
ture of systems@4,5#. It is predicted that the MFD of chaoti
systems always becomes the Gaussian distribution irres
tive of boundary conditions, and that the MFD of integrab
systems always clearly deviates from the Gaussian. It is
merically shown that the MFD in the hyperbolic billiard
consistent with the Gaussian distribution and independen
the boundary conditions. Recently the MFD’s of several
tegrable and chaotic billiards have been studied@6,7#. These
results also support the MFD hypothesis. For example, el
nating the contribution of the bouncing ball orbits careful
the MFD becomes very close to the Gaussian distribution@6#
in the Bunimovich stadium billiard.

So far the hypothesis has been checked only on billi
systems, but it has not been tested for potential system
this Brief Report we choose a system of two quartic osci
tors coupled by a quartic term to each other. Previously si
lar systems have been intensively studied employing o
methods@8–11#. This system is known to be a suitable e
ample that can be transmuted from an integrable system
chaotic system continuously by changing a single coup
parameter. It has been investigated that the NNSD evo
from a Poisson distribution to a Wigner distribution und
transmutation@8#. The spectral rigidityD3 has also been
PRE 581063-651X/98/58~6!/8017~4!/$15.00
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studied, and shows a similar evolution@8#. In the following
we show that the MFD behaves as the Gaussian distribu
in the chaotic regime, a characteristic skew distribution
the integrable limit, and various other distorted distributio
in the intermediate regimes.

With a bounded potential a quantum system has a disc
energy spectrum$En%, which defines a spectral staircas
function N(E)[(n51

` u(E2En), and the spectral densit
d(E)[dN(E)/dE. The staircase function can be separa
into a mean smooth part^N(E)& and a mode fluctuating par
Nfl(E): N(E)5^N(E)&1Nfl(E). Note that the bracke
^•••& denotes the average over an interval which is mu
larger than the mean energy level spacing^d&21, and suffi-
ciently smaller than the energyE under consideration.

It is expected that our system has a saturated valueD`(E)
of the spectral rigidityD3(L,E) at sufficiently largeL, as in
the billiard systems@4,5,12#. The saturated value turns out t
be the second moment of the fluctuating part, i.e.,

D`~E!⇒K ^d&
L E

2[L/2^d&]

[L/2^d&]
Nfl~E1«!2d«L atL@Lmax,

~1!

whereLmax corresponds to a scaleh^d&/Tmin , which is an
energy scaleh/Tmin normalized by the mean energy lev
spacinĝ d&21, andTmin is the period of the shortest classic
closed orbit in the system. The MFD is the normalized d
tribution of the fluctuating partNfl(E). It is defined as the
distribution of a variable,

W~E!5
Nfl~E!

AD`~E!
. ~2!

Thus its average must be zero, and its variance must be
The Hamiltonian of the coupled quartic oscillators that w

choose is

H5 1
2 ~px

21py
2!13x41y42lx2y2. ~3!
8017 © 1998 The American Physical Society
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FIG. 1. ~a! The Poincare´ sections corresponding to the Hamiltonian given by Eq.~3!: (y,py) section atx50. ~b! The mode fluctuation
distributions which are given by the histogram of the variableW(E) defined by Eq.~2!.
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Note that we set dimensionless units\5m51 (h52p),
wherem is the mass of a classical point particle in the sy
tem. The last term2lx2y2 distorts the two-dimensional
quartic potential, but keeps the potentialV(x,y)53x41y4

2lx2y2 homogenous. Forl50, this system becomes sepa
rable, that is, a superposition of two integrable systems w
quartic potentials. Ifl.2A3, the potentialV(x,y) no longer
forms a bound quantum system. Then the search for a d
crete spectrum of the system becomes meaningless. Th
fore, we must keepl<2A3 in order to calculate the eigen-
values.
-

h

is-
re-

One of the most important properties of our classical s
tem is its scaling property. The system is invariant under
transformationx→cx, y→cy, t→t/c, E→c4E, owing to
the homogenous potentialV(x,y). This scaling relation lead
to some advantages in classical dynamics. The Poincare´ sur-
faces of section, the equipotential surfaces, and the orbi
the phase space are geometrically similar under the sca
of energy. Their sizes are justc times larger in the directions
of the coordinates, andc2 times larger in the directions of th
momenta. Thus, once we find a closed orbit at a certain
ergy, there always exists a corresponding closed orbit at
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other energy. Its lengthl and periodT are transformed as
l →cl andT→T/c, if E→c4E. Therefore the classical dy
namical properties are geometrically similar under the s
ing relations. As the simplest example, we can determine
shortest period of the unstable and isolated closed orbitTmin
as a function of energyE. The shortest periodic orbit is al
ways a straight line, withy50 along thex axis, and we
obtain Tmin5aE21/4 from the scaling relation. The explici
value ofa is given below.

In order to investigate the dynamical structure of our s
tem, we numerically calculate orbits for various initial co
ditions and evaluate Poincare´ sections. Roughly speaking
the largerl goes, the more chaotic the system becomes@Fig.
1~a!#. If l is closer to 2A3 (>3.464), the islands of stability
become smaller and the chaotic regions dominate more in
Poincare´ section. At l52.7 @Fig. 1~a!#, at least from our
numerical investigation, there remains no island in the Po
caré sections. It can be regarded as a chaotic system.
study of the Poincare´ sections also shows that the la
Kol’mogorov-Arnol’d-Moser ~KAM ! collapses somewher
very close tol50.80 @Fig. 1~a!#.

We compute the energy levels by numerical diagonali
tion of the truncated matrix of Hamiltonian~3! in the basis of
two independent harmonic oscillators@13#. We calculate
3000–5000 eigenvalues out of about 8500–15 0
dimensional truncated matrices of Hamiltonian~3!. The con-
vergence of the calculated eigenenergies has been confi
by changing the frequencies of two harmonic oscillato
Only eigenenergies corresponding to wave functions
even-even parity are calculated. This means that what
actually calculate is the desymmetrized system: a quarte
the system, where a classical point particle is confined
region of x>0 andy>0, and is reflected by walls atx50
andy50.

The Brody parameter is evaluated for each value ol
@14#. Each data point in Fig. 2 is evaluated by using 300
5000 energy levels from the ground state. Forl.2.0 the
values of the Brody parameter vary widely in a range
about 0.2. This may be due to the precision of our calcu
tion. The convergence of eigenvalues in a numerical dia

FIG. 2. Evaluated Brody parameters as a function of the c
pling strengthl.
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nalization of the truncated Hamiltonian becomes worse i
region of largerl. The Brody parameter shows its platea
around 0.3,l,0.8, and afterl.0.80 it swiftly rises to 1. It
corresponds remarkably to the classical mechanical fea
that remaining KAM tori split the phase space into the su
regions. However, afterl.0.80, an overall mixing of the
phase space occurs.

For the casel50.0, our system becomes completely i
tegrable. The spectral rigidity is semiclassically estimated
@12,15#

D`~E!5
3

2p2 (
M1 ,M251

` M1
2M2

2/C1
3C2

3

S M1
4

C1
3 1

M2
4

C2
3 D 7/4E

3/4>0.0257E3/4,

~4!

where C1531/3(3p/2K)4/3, C25(3p/2K)4/3 and K
5F(p/2,1/A2)51.854 07, withF being the complete ellip-
tic integral of the first kind. On the other hand, from ener
levels, it is numerically estimated asD`(E)50.0254E3/4

10.146@Fig. 3~a!#, and conforms to the semiclassical ana
sis. This implies that the Berry-Tabor treatment@15# works
fairly well even in the case of a nontrivial potential system

When the system is sufficiently chaotic,l52.7, we can
predict the energy dependence ofD`(E) as @12#

-

FIG. 3. The energy dependence of the saturated spectral rig
D` of the integrable case~a! l50, and the chaotic limit~b! l
52.7. Each value ofD` represents the average value of about 6
200 sample points. It is plotted at the average energy of the sam
points. The axis of abscissa for the integrable case~a! represents the
3
4 th power ofE.
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D`~E!>
1

p2 ln$eLmax%2
1

8
. ~5!

Here Lmax>2p^d&/Tmin is the maximum value ofL, above
which the spectral rigidityD3(L,E) is saturated,Tmin is the
shortest period of the closed orbit@12#, and e is the Euler
number. The scaling relations are also helpful in a quan
analysis. From the scaling relationsTmin5aE21/4 and ^d&
5bE1/2, we have

D`~E!>
3

4p2 ln E1
1

p2 lnH e
2pb

a J 2
1

8

50.0760 lnE20.0616, ~6!

where a51.41 andb50.152 are used. The value ofa
5(3p/2)C1

23/4 is derived from an analytical calculation o
the classical shortest periodic orbit. The value ofb is ob-
tained by the numerical calculation of the quantum ene
density. Numerically the energy dependence ofD`(E) is fit-
ted well asD`(E)50.0802 lnE20.0454 for l52.7 @Fig.
3~b!#. Considering the precision of our numerical calculatio
it agrees well with the semiclassical prediction@Eq. ~6!#.

When 0.0<l,1.0, the MFD forms into variously dis
torted shapes@Fig. 1~b!#, whereas the NNSD is like the Pois
son distribution~Fig. 2!. This complicated behavior of th
MFD results from the mixture of the islands of the pseud
periodic orbits and the chaotic regions. Particularly in t
range of 0.0<l,0.1, the NNSD is very close to the Poisso
distribution. However, the MFD already transforms to a ve
distorted form atl50.1. This implies that the MFD is mor
sensitive to the effect of a small perturbation on the in
grable system than the NNSD. The Brody parameter fo
its plateau around 0.3,l,0.8 ~Fig. 2!, while the MFD
et

it
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y

,

-
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-
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changes rapidly and is already close to the Gaussian di
bution atl50.8 @Fig. 1~b!#. Whenl.1.0, the MFD already
becomes very close to the Gaussian form. On the other h
the NNSD transforms toward the Wigner distribution co
tinuously. The Brody parameter also indicates that
NNSD becomes very close to the Wigner distribution wh
l.2.0 ~Fig. 2!. Especially atl52.7, the Brody parameter i
very close to 1, which corresponds to the Wigner distrib
tion.

In this paper, we have examined coupled quartic osci
tors whose Hamiltonian is given by Eq.~3!. The Hamiltonian
can simulate the transition from integrable to chaotic syste
by the variation of a single parameterl. This feature is
confirmed by an analysis of the corresponding classical P
carésections and the quantum mechanical NNSD. In orde
analyze the MFD, the spectral rigidity is calculated. The e
istence of saturated values of the spectral rigidity is num
cally confirmed, and corresponding values in the integra
and chaotic domains conform to those deduced from
semiclassical arguments. In the regime where the syste
sufficiently chaotic (l52.7), the MFD becomes almost in
distinguishable from the Gaussian distribution. The syst
can be set exactly integrable (l50.0), and then the MFD
expresses a characteristic asymmetry as in the square bi
@16#, and as in stadium billiards with bouncing ball mod
@6,7#. Although it presents a Gaussian distribution for t
chaotic limit, the MFD is more likely to manifest the skew
ness that is characteristic of the integrable system. It can
tell the difference between hard chaos and soft chaos a
the last KAM has disintegrated. Therefore, we conclude t
it should be the measure of the integrability rather than
chaoticity not only in billiard systems but also in potenti
systems, as seen from the example of coupled oscilla
described here.
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